
UGP End Term Report
CS396A, Semester 2017-18-II

Neural Network based Modelling and
Control of Quadrotor

Mrinaal Dogra
Roll No.: 150425

E-mail : mrinaald@cse.iitk.ac.in
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur.

Mentor : Pratyush Varshney
Roll No.: 16211402

E-mail : pratyushvarshney@cse.iitk.ac.in
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur.

Supervisor : Dr. Indranil Saha,
E-mail: isaha@cse.iitk.ac.in

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur.

April 26, 2018

Abstract

The physics-based models of the quadrotors are being used for a long time to
synthesize their controllers. All such controllers work with the linearized model of
quadrotor, thus becoming prone to errors in adverse situations because, in reality,
the quadrotor models are non-linear.

Recent advancements in deep learning techniques have shown that these tech-
niques are very efficient in learning non-linear functions. This motivates us to use
them for learning the model of a quadrotor. This project aims at using neural
network techniques to learn the model of the quadrotor and to use them for syn-
thesizing a controller for it.

1

mailto:mrinaald@cse.iitk.ac.in
mailto:pratyushvarshney@cse.iitk.ac.in
mailto:isaha@cse.iitk.ac.in

1 Introduction

1.1 Aim

The aim of this project is to first reproduce the results presented in [1], i.e., to learn the
quadrotor dynamics using neural networks, and then to extend their work such that the
synthesized controller can be used even when there are winds in the environment.

1.2 Motivation

In the real world, quadrotor dynamics is a non-linear system. However, the developed
physics-based models work under an assumption that the system is linear, thus linearizing
the non-linear system around the hover conditions. This assumption leads to certain
errors in the developed models of the quadrotor, which also propagates to the controllers
derived using them.

2 Previous work

In [1], the authors have tried to develop a quadrotor’s model using neural networks,
which is then used to generate the desired controls and the feasible trajectory for a given
reference trajectory. Another approach has been presented in [2], where the authors
have used reinforcement learning techniques to train a neural network, which can be
used to control a quadrotor. Reinforcement learning techniques are also used to design a
controller for flying a helicopter in an inverted fashion, as presented in [3]

3 Quadrotor Dynamics

As the derivation of the quadrotor dynamics will itself become a chapter, the major
equations used for modelling the quadrotor[4] are described in subsequent sub-sections.

Figure 1: Frame of reference for Quadrotors1

1Image Source: https://www.sciencedirect.com/science/article/pii/S0019057817305621

2

https://www.sciencedirect.com/science/article/pii/S0019057817305621

3.1 State Variables

The twelve state variables of the quadrotors are as follows:

p = (x, y, z) = The inertial North-East-Down position of the quadrotor
v = (ẋ, ẏ, ż) = The linear velocities measured in inertial frames
ζ = (φ, θ, ψ) = The Euler angles (roll, pitch, yaw) with respect to body fixed frame

ω = (ωx, ωy, ωz) = The angular velocities measured with respect to body fixed frame

3.2 Quadrotor System Model

The six degree of freedom model for the quadrotor kinematics and dynamics can be
described with the following equations:xy

z

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ + sφcψ
sθ −sφcθ −cφcθ

ẋẏ
ż

 (1)

ẍÿ
z̈

 =

ωzẏ − ωyżωxż − ωzẋ
ωyẋ− ωxẏ

+
1

m

fxfy
fz

 (2)

φ̇θ̇
ψ̇

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

ωxωy
ωz

 (3)

ω̇xω̇y
ω̇z

 =


Jy−Jz
Jx

ωyωz
Jz−Jx
Jy

ωxωz
Jx−Jy
Jz

ωxωy

+

 1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 (4)

Figure 2: The moments of inertia for the quadrotor are calculated assuming a spherical
dense center with mass M and radius R, and point masses of mass m located at a distance
of l from the center.2

where cφ, sφ, tφ→ cosφ, sinφ and tanφ respectively. Similarly for other angles

fx, fy, fz → Forces along the ebx , eby , ebz axis respectively. Refer Figure 1

Jx, Jy, Jz → Moment of inertia of quadrotor along the three principal axes

τx, τy, τz → Moments along the three principal axes

2Image and Caption source: [4]

3

4 Quadrotor System Identification

This section describes the system identification problem for a quadrotor system. As we
were trying to reproduce the results of [1], most of these equations and explanations are
referenced from there.

Let s and u be respectively the state vector and the control inputs of the dynamical
system. Then, the goal of system identification is to find a mapping f from state-control
to state-derivative, i.e.:

ṡ = f(s, u;α)

where the system model is parameterized by α. The quadrotor state vector is a twelve
dimensional vector which includes all the state variables described in section 3.1,

s =


p
v
ζ
ω


The Euler angles (ζ) parameterize the coordinate transformation from inertial frame to
body fixed frame with the standard yaw-pitch-roll convention, i.e., a rotation by ψ about
the z-axis in the inertial frame, followed by a rotation of θ about the y-axis of the body-
fixed frame, and finally another rotation of φ about the x-axis in the new body-fixed
frame. This is written compactly as:

B
I R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (5)

where I is the inertial NED frame, B is the body-fixed frame, and Rx, Ry, Rz are the basic
3× 3 rotation matrices about their respective axes.

The control inputs u = [u1 u2 u3 u4] are used to control the system, where u1 is the
thrust along the z-axis in B, and u2, u3 and u4 are rolling, pitching and yawing moments
respectively, all in B. Thus, the equation which governs the dynamics of our system:

ṡ =


ṗ
v̇

ζ̇
ω̇

 = f(s, u;α) =


fp(s, u;α1)
fv(s, u;α2)
fζ(s)

fω(s, u;α3)

 (6)

where the system model is parameterized by α := (α1, α2, α3). The functions fp, fv, fζ
and fω, and the parameters α are explained in section 5. The system identification task
for the quadrotor is thus to determine α1 (resp. α2, α3), given observed values of fp (resp.
fv, fω), s and u. For this, we minimize the mean squared prediction error (MSE) over a
training set of collected data, solving:

min
α1

T∑
t=1

1

T

∥∥∥f̃p,t − fp,t(st, ut;α1)
∥∥∥2
2

(7)

where f̃p,t are the observed values of fp. A similar optimization problem can be defined
for fv and fω

4

5 Neural Network Implementations

5.1 Same model as used in reference [1]

In order to reproduce the results of [1], we first tried the neural network architecture
which the authors had used. The system identification problem which they had tackled
is same, but the equations governing the quadrotor dynamics were different from (6)

ṡ =


ṗ
v̇

ζ̇
ω̇

 = f(s, u;α) =


v

fv(s, u;α1)

R̂ω
fω(s, u;α2)

 (8)

where R̂ is the rotation matrix used to get the Euler rates(ζ̇), which can be obtained
by rotating the angular velocities from the body-fixed frame to the inertial-frame[4] as
follows:

ζ̇ = R̂ω, R̂ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 (9)

Thus, their system identification problem only consists of determining α1 and α2(in our
case α2 and α3 resp.)

The neural network architecture which they proposed consists of a single hidden layer
with ReLu activation function and an output layer. The model can be represented alge-
braically as:

fv(β;α1) = wTφ(W Tβ +B) + b (10)

where fv represents the unknown linear acceleration component in (8). This is modeled
by a neural network whose input is β := [v ω sin(ζ) cos(ζ) u1], a 13-dimensional
vector; a hidden layer with N := 100 units with weight matrix W ∈ R|β|×N and bias
vector B ∈ RN , and a linear output layer of 3 units with weight matrix w ∈ RN×3 and
bias vector b ∈ R3. φ is the ReLu activation function, i.e., φ(·) = max(0, ·).

Figure 3: The neural network architecture used to learn fv. The NN consists of two
layers, a hidden ReLu layer and an output layer. The parameters to be learned during
the training process are α1 = (W,B,w, b).3

3Image and caption source: [1]

5

They used a similar architecture to learn fω. The only difference was the input, which
was β := [v ω sin(ζ) cos(ζ) u2 u3 u4], a 15-dimensional vector. The dimensions of
weight matrix W and bias vector B were also changed accordingly.

The authors then used the above two networks to generate a feasible trajectory and
desired controls from an input reference trajectory using the optimization problem:

arg min
sNH ,uNH

NH∑
n=0

‖s(n)− sd(n)‖2 (11)

s.t. s(n+ 1)− s(n) = f(s(n), u(n);α)∆t, n = 0, . . . , NH − 1

where, n indexes the time step, ∆t is the sampling rate, s(n) and u(n) are the state
and input of the quadrotor at time n∆t, α = (α1, α2) are the parameters learned during
the neural network training, sNH

d := {sd(0), s(1), . . . , sd(NH)} is the reference/desired
trajectory over a horizon NH .

The main problem which we faced while implementing [1] was the method which they
were using to solve the optimization problem (11). This problem is briefly described in
section 6.1. This led us to redefine our quadrotor system equations and system identifi-
cation problem, resulting in equations (6) and (7).

5.2 Our Implementation

After failing to further implement [1], we modified the system identification equations to
(6) and (7). This means that now, instead of learning two neural networks, we would
learn three different networks to generate the state-derivative from the current state and
controls of the quadrotor. The function fζ is taken directly from equation (8), i.e.,

ζ̇ = fζ(s) ; fζ(s) = R̂ω (R̂ from equation (9))

To keep things simple, we used almost the same neural network architecture for all the
three cases. The neural network for fp and fv has an input of the form β := [p v ζ ω u1]
a 13-dimensional vector, four hidden layers with 128 units each having weight matrices
Wih1 ∈ R|β|×128,Wh1h2 ,Wh2h3 ,Wh3h4 ∈ R128×128, and bias vectors bh1 , bh2 , bh3 , bh4 ∈ R128,
and an output layer of 3 units with weight matrix and Wh4o ∈ R128×3. We have used the
ReLu activation function for all the hidden layers.

We also used a similar architecture to learn fω. The only difference was the input,
which was β := [p v ζ ω u2 u3 u4], a 15-dimensional vector. The dimensions of weight
matrix Wih1 and bias vector bh1 were also changed accordingly.

6

Figure 4: The final neural network structure which we used for fp, fv
and fω. The parameters for this neural network structure are αj =
(Wih1 , bh1 ,Wh1h2 , bh2 ,Wh2h3 , bh3 ,Wh3h4 , bh4 ,Wh1o) where j = 1, 2 or 3. ReLu activation
function is used for each hidden layer.

6 Challenges

6.1 SCP Implementation in Reference [1]

This was one of the major challenge which consumed a lot of our time. The authors
of [1] have proposed to use the sequential convex optimization technique to solve (11),
as the output of neural networks is non-linear, thus making it a non-convex problem.
They haven’t provided a lot of details about the way they solved this problem, and have
suggested the reference for interested readers as [5].

However, even after reading it, we were not able to translate the optimization problem
(11) into SCP. The authors of [5] have used the proposed algorithm on one-dimensional
constraints which are definite in nature (like x ≤ γ for some γ where x ∈ R). They
did not talk about having a vector or about a neural networks in the constraints. This
lack of information proved a hurdle in our project, as we were unable to implement the
optimization problem (11) in any way. Ultimately, we decided to change our quadrotor
system equations and to use some alternate ways to solve the optimization problem.

7

6.2 Required Data for training

Unlike the authors of [1] who flew a real Crazifly-2.0 to collect the required data, we
used a simulation to gather the data required for training. This simulation was run using
Mavros4, PX45 and Gazebo using the PX4-ROS(Mavros) interface6.

The training data which we used is of the form:

β1 = [p v ζ ω u1]

β2 = [p v ζ ω u2 u3 u4]

where β1 was used for training the neural networks for fp and fv, and β2 was used for fω.
This required data was collected through the following mavros topics7:

• p = (x, y, z) was collected from rostopic /mavros/local position/pose

• v = (vx, vy, vz) was collected from rostopic /mavros/local position/velocity

• ζ = (φ, θ, ψ) was collected by converting the quaternions obtained from rostopic
/mavrox/imu/data/Quaternion into Euler angles using python’s tf.transformations
library8.

• ω = (ωx, ωy, ωz) was collected from the rostopic /mavros/imu/data/angular velocity

• u = (u1, u2, u3, u4) was collected from the rostopic /mavros/act controls

The architecture of the required mavros topics in the PX4-ROS interface is shown in
figure 5. Note that the PX4 does not publish the actuator controls as for now, thus we
had to create a new message9 as well as its publisher for the topic /mavros/act controls

in the PX4 architecture.
The output ground truth values for ṡ was created by taking the approximate derivative

of the next state with the current state with respect to time, i.e.,

ṡn =
sn+1 − sn

∆t
(12)

where ∆t was the time difference between two consecutive observed states. All the mavros
publishers were synchronized to publish the data at 50Hz, thus making ∆t = 0.02 seconds.

We collected all this data for 23 different trajectories, which includes sinusoid trajec-
tories in XY, YZ and XZ directions, and some completely random trajectories, trying to
cover all the possibilities of the states and controls.

4http://wiki.ros.org/mavros
5px4.io/
6https://dev.px4.io/en/simulation/ros_interface.html
7To read about ROS Topics, visit http://wiki.ros.org/Topics
8http://docs.ros.org/jade/api/tf/html/python/transformations.html
9To read about ROS messages, visit http://wiki.ros.org/Messages

8

http://wiki.ros.org/mavros
https://dev.px4.io/en/simulation/ros_interface.html
http://wiki.ros.org/Topics
http://docs.ros.org/jade/api/tf/html/python/transformations.html
http://wiki.ros.org/Messages

Figure 5: The schematic diagram of the PX4-Mavros interface which is used to collect
the data for training. The green colored topic and node were not initially present in PX4.
They were created to help us collect the data for actuator controls.

7 Results

After training the above networks, we tested the output generated by them for a circular
trajectory(which was not present in the training dataset) and the results were quite
satisfactory:

Figure 6: Plots for fp. These plots represent the linear velocities of the next state
as measured from the dataset(the blue plot) and the linear velocities of the next state
computed by neural network fp.

9

Figure 7: Plots for fv. These plots represent the linear accelerations of the next state as
measured from the dataset(the blue plot) and the linear accelerations of the next state
computed by neural network fv.

Figure 8: Plots for fζ . These plots represent the Euler angles of the next state as measured
from the dataset(the blue plot) and the angles of the next state computed by using fζ .

10

8 Future Work

We will try to learn a controller using some deep learning techniques by trying to solve
the optimization problem mentioned in equation (11), to generate discrete controls for the
given horizon. We will also try to implement some Reinforcement Learning based algo-
rithms for continuous control generation like Trust Region Policy Optimization (TRPO),
Deterministic Deep Policy Gradient (DDPG). We will incorporate the effects of wind on
these controls also.

References

[1] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning quadrotor dynamics using neural network for flight control,” CoRR,
vol. abs/1610.05863, 2016.

[2] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with reinforce-
ment learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2096–2103,
2017.

[3] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang, “Autonomous inverted helicopter flight via reinforcement learning,” in Ex-
perimental Robotics IX, The 9th International Symposium on Experimental Robotics
[ISER 2004, Singapore, 18.-21. June 2004] (M. H. A. Jr. and O. Khatib, eds.), vol. 21
of Springer Tracts in Advanced Robotics, pp. 363–372, Springer, 2004.

[4] R. Beard, “Quadrotor dynamics and control,” 04 2018.

[5] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding locally
optimal, collision-free trajectories with sequential convex optimization,” in Robotics:
Science and Systems IX, Technische Universität Berlin, Berlin, Germany, June 24 -
June 28, 2013 (P. Newman, D. Fox, and D. Hsu, eds.), 2013.

11

	Introduction
	Aim
	Motivation

	Previous work
	Quadrotor Dynamics
	State Variables
	Quadrotor System Model

	Quadrotor System Identification
	Neural Network Implementations
	Same model as used in reference DBLP:journals/corr/BansalAJLT16
	Our Implementation

	Challenges
	SCP Implementation in Reference DBLP:journals/corr/BansalAJLT16
	Required Data for training

	Results
	Future Work

